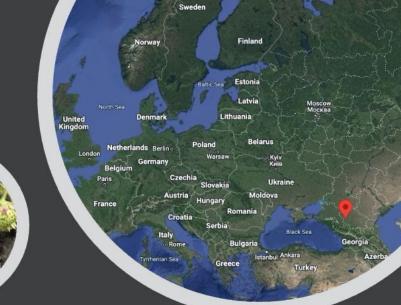


The Hidden
Mystery Behind Soil
Contamination and
Simple Ways to
Defeat It

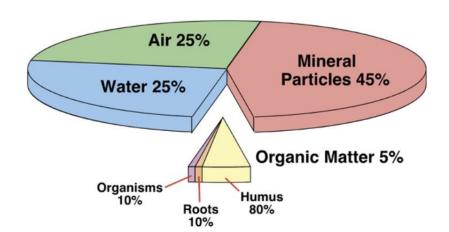
Anna Paltseva, PhD


Endowed Assistant Professor in Environmental Sciences

University of Louisiana at Lafayette

Chair-Elect, Urban & Anthropogenic Soils Division

Soil Science Society of America

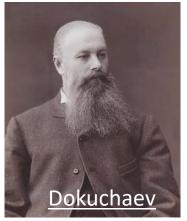


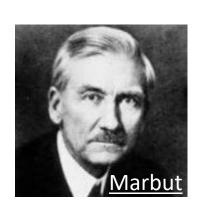
Soil Basics 1 **Urban Soils** 2 Outline **Soil Contamination** 3 Contamination remediation 5 Delta Urban Soils Laboratory

Soils are More than Dirt!

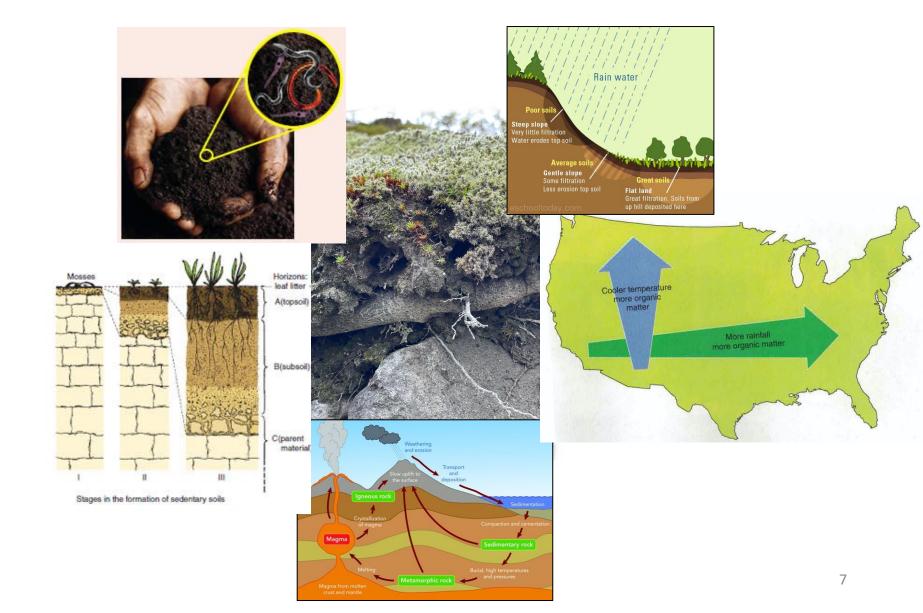
- ✓ Soil is a living system
- ✓ There are more microorganisms in a handful of soil than there are people on earth
- ✓ It takes ~100 years to produce just 1 cm of soil
- ✓ Soil provides all the nutrients required for successful plant growth
- √ % of sand, clay and silt → soil textures
- √ 6 layers: horizons O, A, E, B, C and R

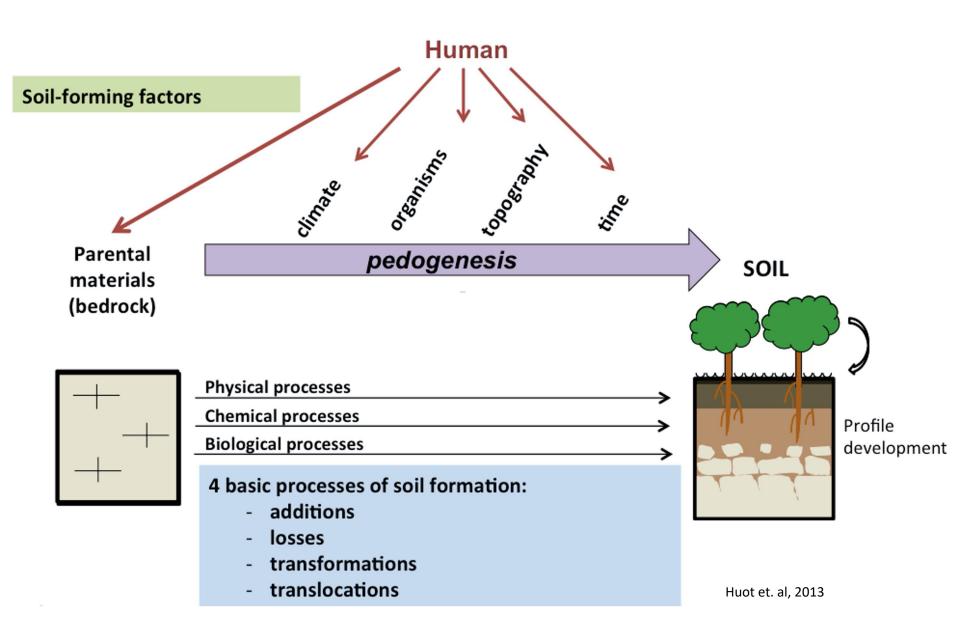
Why is Soil Important?

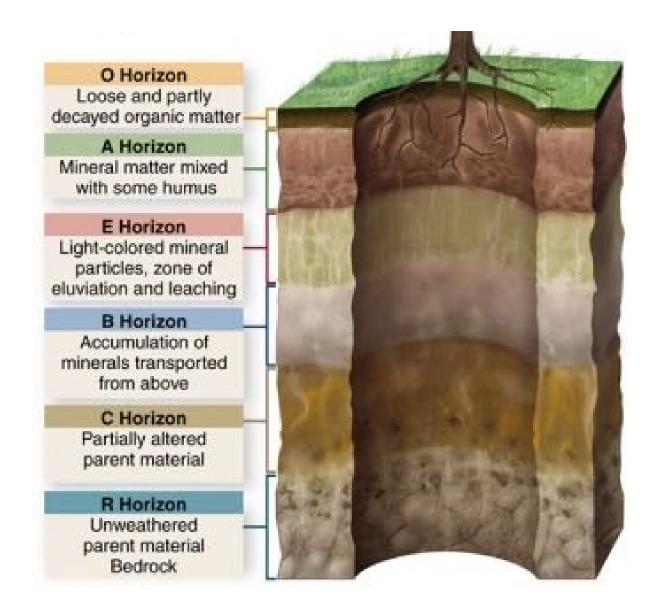

How is Soil Formed?


Soil is a very slow renewable resource

Edaphology studies the influences of soils on organisms (plants)


Pedology is the study of:


- Soil formation (or soil genesis)
- Soil classification
- Soil mapping
- Beginning in 1870, the Russian school of soil science under the leadership of <u>V. V. Dokuchaev</u> (1846–1903) was developing a new concept of soil.
- Under the leadership of <u>C. F. Marbut</u> (1863–1935), the Russian concept was broadened and adapted to conditions in the United States.


5 Soil Formation Factors

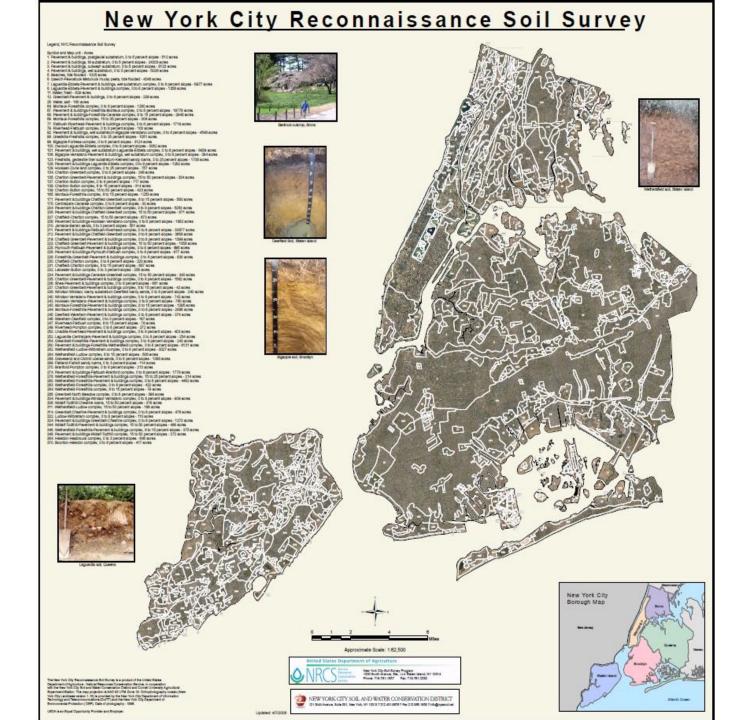
Soil Profile and Horizons

- Layers develop over time called soil horizons
- The soil profile
 is a vertical
 section that
 shows all the
 horizons
- Processes occur differently at different depths

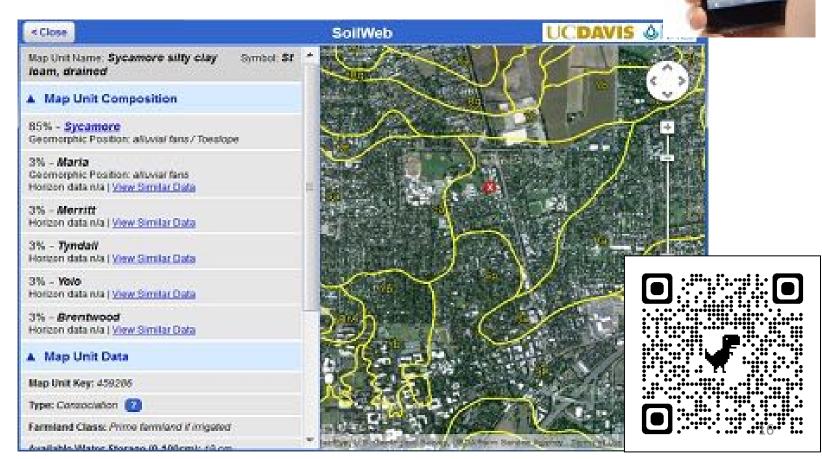
Soil Basics 1 **Urban Soils** 2 Outline **Soil Contamination** 3 Contamination remediation 5 Delta Urban Soils Laboratory

Urban Soils

Urban soil is a key component of urban ecosystems,


because it performs essential functions:

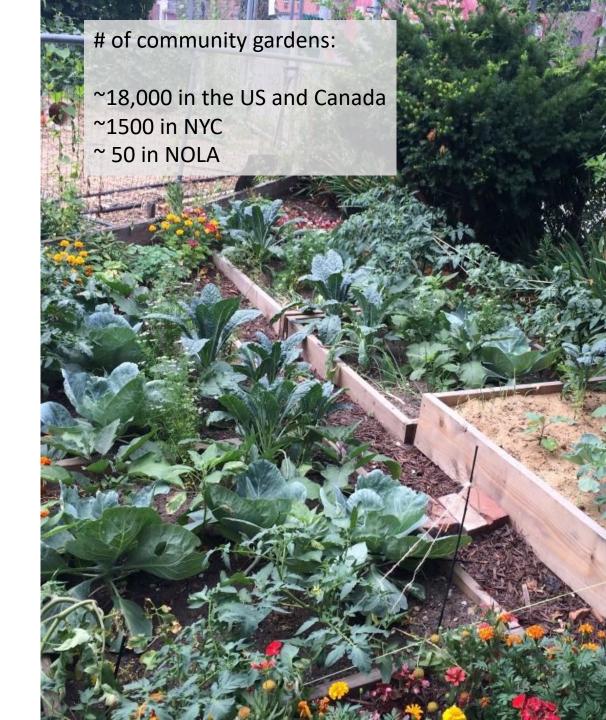
- regulation of water flow and quality
- carbon storage
- reservoir of biodiversity
- platform for buildings
- support for food and biomass production



Learn more about soils under your feet

California Soil Resource Lab – UC Davis

Soilweb for GPS-enabled cellphones


http://casoilresource.lawr.ucdavis.edu/soilweb-apps/

Soil Basics 1 **Urban Soils** 2 Outline **Soil Contamination** 3 Contamination remediation 5 Delta Urban Soils Laboratory

Urban Gardening and Its Benefits

- ✓ Nutritious food to locals
- ✓ Grocery bill reduction
- ✓ Health benefits
- Minimizing criminal activities
- A deeper connection to agriculture and nature

Lead and Arsenic are Important Environmental Contaminants

Pb is a neurotoxin affecting cognitive development, quite immobile

Main sources:

- -lead-based paint,
- -point source emitters,
- -leaded gasoline emissions.

As is a human carcinogen, very slowly leached through soils.

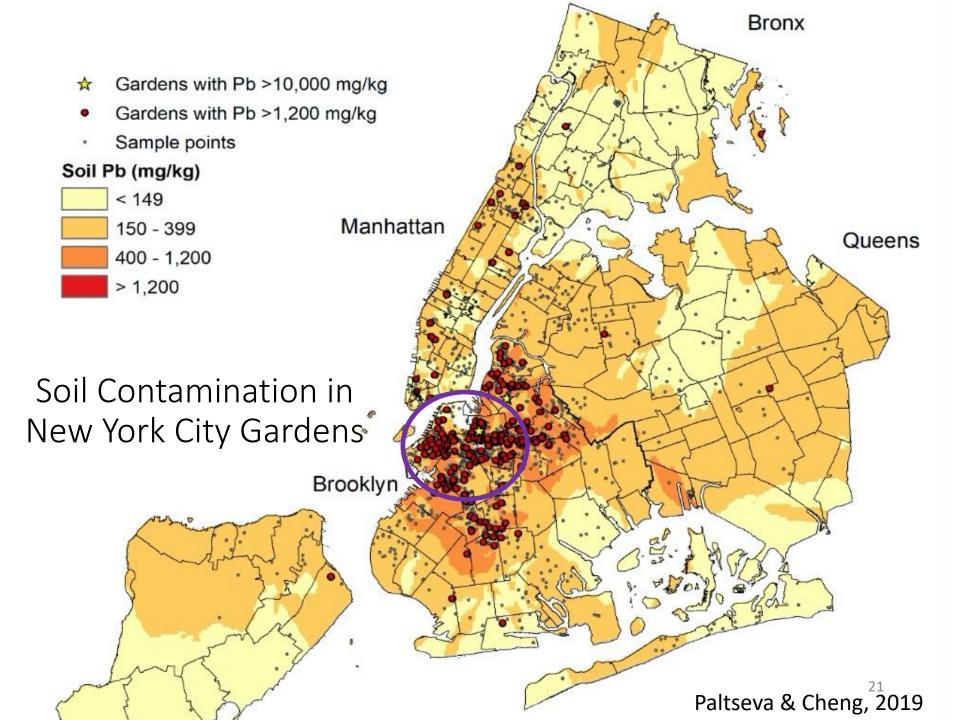
Main sources:

- -pesticides,
- -pressure treated lumber.

Comparison of Mean Heavy Metal Concentrations in Urban Soils in Different Cities

	# samples	Cr	Ni	Cu	Zn	As	Cd	Pb	Type of samples	Referen
		Cit	ies over	l mili	lion ped	ple				
New York City	1652	49	28	77	248	10	1.2	355	Garden soil	(Cheng et 2015)
Bangkok	30	25	23	27	38	-	0.15	29	Topsoil	(Wilcke al., 199
Hong Kong	236	17	4	10	78	-	0.33	71	Urban	(Lee et a 2006)
Beijing	~770	34	27	21	62	7.8	0.12	27	Topsoil, mean	(Chen et a 2005)
London - Richmond	214	-	-	30	108	-	< 0.2	158	Topsoil	(Kelly et 1996)
London - Wolverhampton	295	-	-	62	231	-	0.80	106	Topsoil	(Kelly et 1996)
Vienna	96	80	-	18	97	8	0.2	65	Urban, 0-20 cm	(Simon et 2013)
Warsaw	nd	32	12	31	166	-	0.73	57	nd	(Czarnow 1980)
Madrid	55	75	14	72	210	-	-	161	0-20 cm	(De Mig et al., 19
Moscow	224	-	17	30	105	4	0.5	30	Public areas, 0-20 cm	(Romzayl et al., 202
Berlin	2182	25	8	31	129	3.9	0.35	77	0-20 cm	(Birke a Rauch, 20
Damascus	51	51	35	30	84	-	-	10	Topsoil, agriculture	(Möller et 2005)
Manila	286	114	21	99	440	-	0.57	214	Metropolitan area, 0-5 cm	(Pfeiffer al., 198)
Dublin	1058	44	41	51	248	15.5	1.8	123	0-10 cm	(Glennor al., 201
Torino	123	129	153	71	147	-	-	94	1-10 cm	(Bıasıolı al., 200'
Coruna	15	39	28	60	206	-	0.3	309	Garden soil, 0-5 cm	(Cal-Priet al., 200
Quezon City	64	370	150	445	1540	-	-	594	Metropolitan area, 0-15	(Navarret al., 201'
Mumbai (Bombay)	30	79	144.5	147	-	-	1.3	42.5	Urban soil	(Ratha a Sahu, 19
		Cities	s less the	an 1 m	illion p	people				(D) :

Zagreb

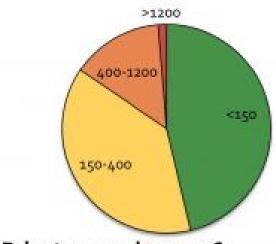

331

Agricultural

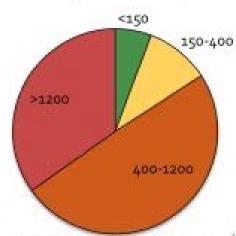
soil

(Romic and

Romic, 200

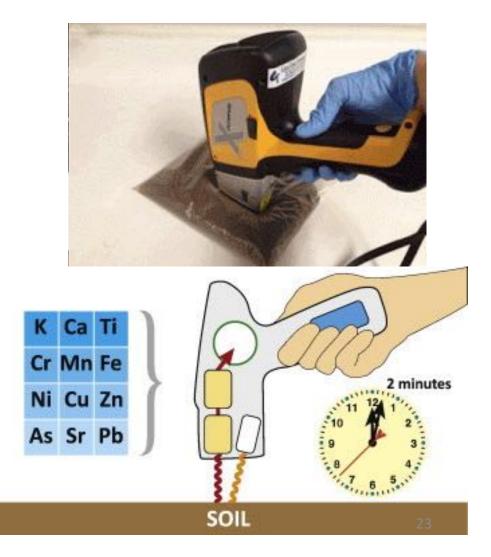


Lead (Pb) levels in soils as measured by XRF

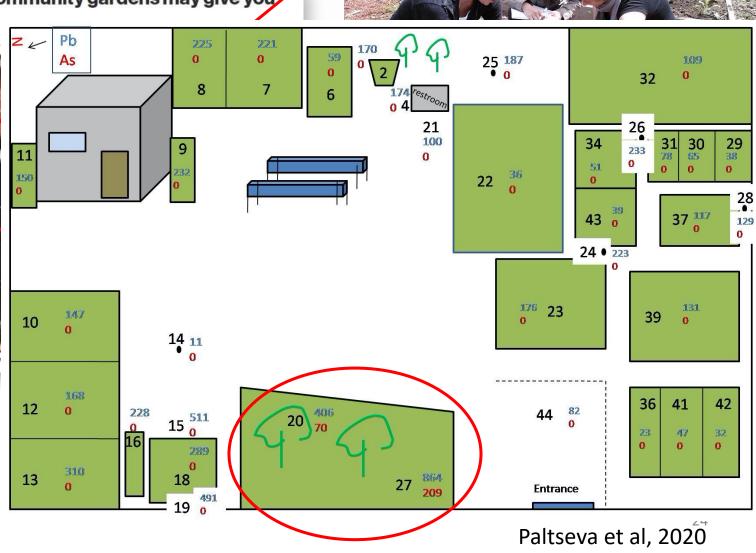

Updated: 10/4/17

Public samples n= 463

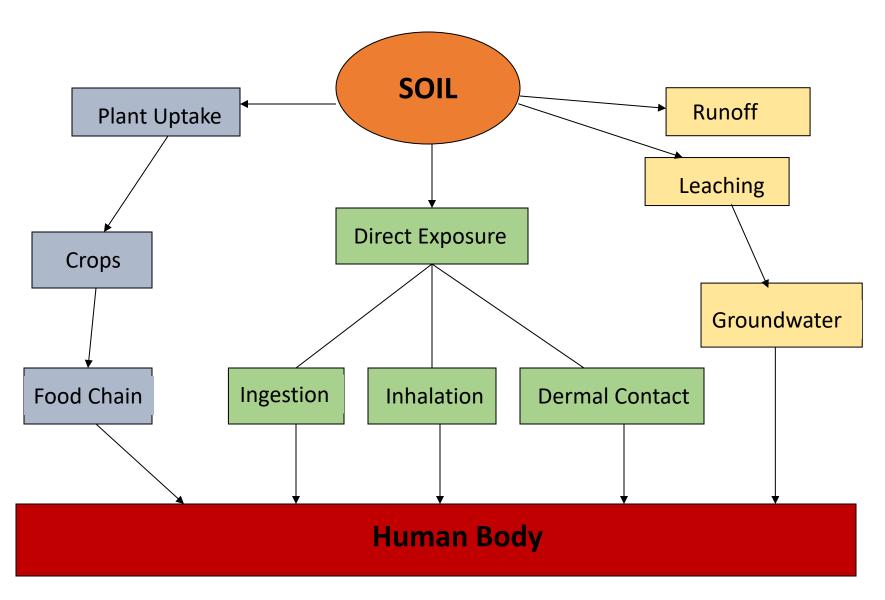
Private samples n= 264


Data collected as part of the Columbia/ Barnard Soil Lead Study 2017. Please contact lead study@ldeo.columbia.edu or fc/2115@columbia.edu with questions. Landes et al (2017)

Lamora-Doherry Earth Observariety

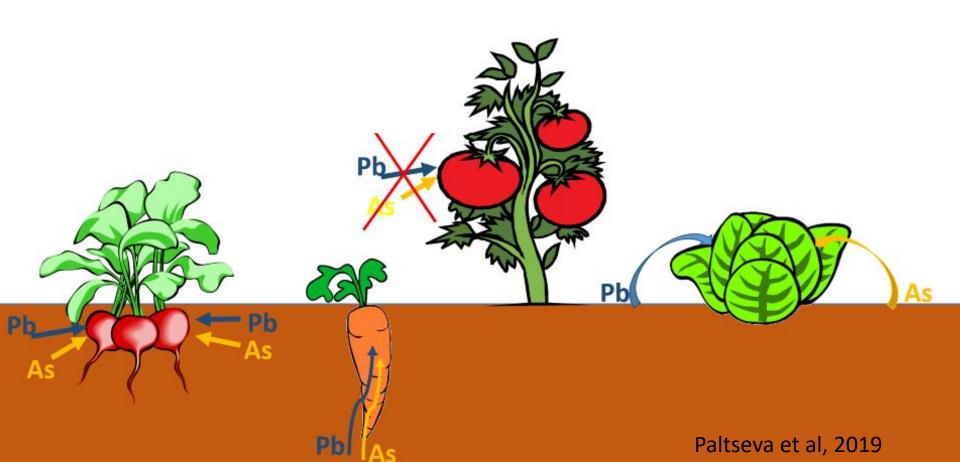

How do we test for metals? XRF measurements

Why NYC's toxic community gardens may give you cancer



Soil Guidelines

	New Jersey	New York	Connecticut
Residential, mg/kg			
Arsenic	22	16	10
Copper	3100	270	2500
Cadmium	71	2.5	34
Chromium		36	100
Mercury	23	0.81	20
Nickel	1600	140	1400
Lead		400	400
Zinc	23000	2200	20000


Exposure Pathways

Plant type is more important than amendment type

Surface contamination, not plant uptake

Soil Basics 1 **Urban Soils** 2 Outline **Soil Contamination** 3 Contamination remediation 5 Delta Urban Soils Laboratory Emerging agricultural waste by-products as soil amendments

NYC Clean Soil Bank provide sediments to community-based organizations

Printer Friendly Email a Friend

Home

About OFR

NYC Voluntary Cleanup Program

E-Designation Program

Grants

Community Resources

NYC Green Property Certification

NYC Clean Soil Bank Forms and Documents

Turbo Training Certified Professionals

News & Events

Document Repository

NYC CLEAN SOIL BANK

What is the NYC Clean Soil Bank?

The NYC Clean Soil Bank (CSB) is a no-cost soil exchange operated by the NYC Office of Environmental Remediation that enables clean native soil excavated from deep below the ground surface during construction of new buildings in NYC to be directly transferred to nearby construction projects that need soil.

Is the NYC Clean Soil Bank an actual pile of soil stored somewhere?

Why was the NYC Clean Soil Bank created?

What are the benefits of the NYC Clean Soil Bank?

Are there other environmental benefits?

What are the other benefits of the NYC Clean Soil Bank?

Strategies and Techniques to Mitigate Soil Contamination

How:

Add compost · biosolids · biochars to soils

Benefits:

Promote soil
aggregates that
adsorb contaminants
Improve soil
structure Reduce
erosion Reduce fine
particle suspension
in air

How:

Add Ca and Mg rich material in soils

Benefits:

Increase in soil pH •
Reduce trace metal
availablity to
organisms • Increase
soil aggregates and
texture

What is a soil aggregate? These are soil particle groups that are bound together stronger that the particles around them. Pore space is formed around these which helps the soils move or retain water and helps the movement of air within the soils.

How:

Use no-till • ridge-till • strip-till methods • Have stable vegetation coverage

Benefits:

Immobilize metals in soils •Reduce topsoil erosion • Lower organic mineral decomposition rates • Longer remediation rates from organic matter • Increase soil aggregates • Reduce fine particle suspension in the air

How:

Install garden areas at least 50 meters from heavy traffic areas

Benefits:

Directly avoid accumulation of contaminants in soils


How:

Add mulch on contaminated soils use drip irrigation

Benefits:

Reduce fine particle suspension in air ·
Reduce flooding and spashing · Decrease risk of recontamination of surface soil or plant tissues

Lecturing with hands on activities on soil basics and soil interpretations. Presenting issues associated with urban gardening and how to mitigate the hazards.

Soil Basics 1 **Urban Soils** 2 **Soil Contamination** 3 Contamination remediation 5 Delta Urban Soils Laboratory

Outline

We can help you to find the best way to remediate contaminated soils; promote organic waste recycling and conservation practices; use smart technologies to evaluate soil resources

Environmental stewardship

We offer informal education via social media channels; publish in academic and non-academic media; facilitate research partnerships

Science communication

Community engagement

Sustainability

We provide expert recommendations for management practices to increase carbon storage and reduce greenhouse gases; promote urban agriculture in food deserts

We collaborate with citizen scientists, artists, gardeners; lead workshops for communities

Coming soon...

THE URBAN SOIL GUIDE: FIELD AND LAB MANUAL

TABLE OF CONTENTS

Acknowledgments	2
Introduction	4
Physical properties	6
Lab 1. HOW DO SOILS FORM? EXAMINING ROCKS, MINERALS AND THE PRODUCTS OF	
WEATHERING UNDER A MICROSCOPE	
Lab 2. WHAT IS A SOIL PROFILE?	
Lab 3. WHY DO SOILS HAVE DIFFERENT COLORS? DOES SOIL SMELL?	19
Lab 4. WHAT IS SOIL TEXTURE?	24
Lab 5. WHAT ARE SOIL STRUCTURE AND CONSISTENCE?	29
Lab 6. WHAT IS THE TOTAL PORE SPACE IN THE SOIL?	32
Lab 7. HOW CAN APPARENT SOIL WATER RETENTION CAPACITY BE ANALYZED?	37
Lab 8. WHAT IS PERMEABILITY OF SOIL?	41
Lab 9. HOW DOES WATER PERCOLATE THROUGH SOILS?	46
Lab 10. BUILD AN URBAN EROSION MODEL	49
Chemical Properties	52
Lab 11. WHAT IS SOIL pH? HOW IS IT MEASURED?	52
Lab 12. WHY IS SOIL SALINITY IMPORTANT?	56
Lab 13. HOW DO CATIONS EXCHANGE IN THE SOIL?	61
Lab 14. HOW CAN CARBONATE CONTENT BE ESTIMATED?	66
Lab 15. HOW MUCH OF TRACE ELEMENTS ARE IN URBAN SOILS?	69
Lab 16. HOW MUCH OF NUTRIENTS DO PLANTS NEED?	74
Biological Properties	78
Lab 17. HOW MUCH OF ORGANIC CONTENT IS IN THE SOIL?	78
Lab 18. WHO LIVES IN THE SOIL?	85
Synthesis Labs	91
Lab 19. USING THE WEB SOIL SURVEY FOR VARIOUS APPLICATIONS	91
Lab 20. TELL A STORY ABOUT YOUR SOIL FROM "A WORM'S EYE VIEW"	95
APPENDIX 1. Soil sampling strategy	98
APPENDIX 2a. Suitable soil pH ranges for selected plants	99
APPENDIX 2b. Effect of soil pH on nutrient availability, toxicity and some organisms	100
APPENDIX 3. Soil organisms and minerals under a microscope (courtesy of George Lozefski)	101
APPENDIX 4. Glossary of soil terms	102

Stay Connected

 Email me with any questions at anna.paltseva@Louisiana.edu

 Subscribe to my YouTube Channel at Anna Paltseva

• For more information on my projects go to annapaltseva.com

